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ABSTRACT 

A theoretical study has been roads of the beh&vior 

of a recently-proposed relay servomechanlam in which 

the sense of the torque applied to the output shaft is 

determined by a comparison of the error and the square 

of the error rate* Response tine, integrated absolute 

error, and integrated squared error for a step input 

are used to measure the degradation of the response aa 

a result of viscous or Coulomb friction, or imperfect 

design of the switching device. It is concluded that 

moderate amounts of friction or slight errors in. the 

switching device can be tolerated with only a small 

aa-erifice in the performance. 

* 
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1-7 
Relay servomechanisras have been used and studied ' for 

a number of years. In the usual system, the sense of the torque 

applied to the output shaft Is controlled by a relay whose 

operation is based on the sign of the error. Subh systems can 

be mado small and simple, but have a tendency to oscillate at 

small amplitudes if the system has moderate amountc of dead 

space, backlash, friction, or timo lag. Linear lead networks, 

which make the torque dependent on both error and error rate, 

havo been used to combat those detrimental effects. 

McDonald3  , Hopkin , and others12 have recently proposed 

that the usual relay system 'oo  modified by the substitution of 

a nonlinear lead network or ' anticipator" for the conventional 

linear lead notwork. In the proposed system, the sense of the 

torque is based on a comparison of the error and the square of 

the error rate. For a step input and neglecting all friction 

torques, this system uss3 maximum iccsleratine torcue until the 

error is reduced to half of its original value and maximum 

decelerating torque until ths orro/- is reduced to zero. 

The proposed syoteir. ia an "optimum" system since it gives 

the minimum response time possible with tho specified inertia 

and maximum tcrque. Becuuae the response time varies as the 

square root of the initial error and the description of the 

roeponoo to a step input doos not furnish a precise statement 

of the reaponoo lor other inputs, the system must be considered 

nonlinear. 



**^- *&&#&*.».•-  . ..- 

• 2 - 

In linear systems, slight errors in the values of any of 

the system parameters produce only slight variations in the 

character of the response* This common-sense observation is 

based on a theorem in mathematics v/hich states that, under 

certain conditions, the solution of a differential equation 

is a continuous and differentiable function of any parameter 

in the equation1^. >hile tho equations of linear servomeohanlsas 

meet the conditions of the theorem, the equations of off-on 

systems may not* For this reason it seems desirable to examine 

somo of tho assumptions on .Aiich previous analyses of the 

proposed optimum system have been based, in order to determine 

whether the parameters of this system are critical and -.-'aether 

differences bet .seen theory and practice might have serious 

consequences* 

The investigations to be described ore concerned uith 

variations of this syatom due to friction or Improper design 

of the nonlinear antioipator. Those systems are called "nearly 

optimum" systems W&cauae thoy become "optimum" in the absence 

of friction or defects in the anticipator-. 

Several criteria have been used to measure degradation of 

the response due to imperfections in the system. 

The speed of response to an abrupt chanj*o in tho input 

signal is on Important characteristic of a control system. In 

linear systems, tho response time for a atep disturbance Is 

defined some'-'hat arbitrarily as the time recuired for the 
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error to become and remain less than a specified fraction, 

usually a fe / hundredths, of the Initial magnitude1'*. This 

sort of definition la perfectly satisfactory for linear systems 

v/hose bohavlor is usually given in nondlxnenulonal variables, 

independent of the Input magnitude. 

This definition is not particularly useful in nonlinear 

systems ./here the character of the response may vary widely 

with changes in the input magnitude and the cr^or may actually 

become zero in a finite time. In the following investigations, 

the response time is defined as the time required for the error 

to become zero (if this tine is finite) or "negligible", ..'hich 

Is interpreted as too small to be detected on a graph. The 

variation of response *i.*>«» v/ith input magnitude and system 

parameters io considered* 

Ambiguioie** in the definition cf response time can be 

avoided by the uao of othor criteria, such as the integrated 

absolute error, 
co 

*I   -      \\*\ dt  , 
4 

or the integrated squared error, 

Ao    —      °"  dt . 

Those Integrals, ./hich also depend on the input magnitude and 

the system parameters, are finite even .-hen the error takes 

an infinite time to become zero* Both integrals have been used 

in theoretical and experimental studies of servomochanioms, 

1^-17 
linear and nonlinear*• •. 
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I. THE IDSALI2JSD SYSTEM 

To provide a standard to which the nearly optimum systems 

can be conpared, the theory of the proposed optimum system  /ill 

he revlev/ed and the various performance criteria applied tc it* 

aaftm Satt&AgBi 
Tho load presented to the motor by the output shaft is 

assumed to be an inertia load, and all friction torques are 

ignored* The motor delivers a torque v/nich is either constant, 

* Tm, or zero. The response of the system to a step input is 

then determined from the equation 

J e =  ± Tm (1) 

v/hero e is the error, dots denote differentiation vrith respocw 

to time, and the sign of the torque depends on e and e in a 

manner to be described. This equation may be integrated directly 

to obtain the error rate 

a     »   Kl   t^-t (2) 

and tho error 

e     =   K2    +   K, t      £ -It"   ** (5) 

ae functions of time, where K^ and K2 ore constants ./hich depend 

on the initial conditions. 

The output shaft is assumed to be stationary whon the step 

input is applied. Because of its inertia, the velocity of the 

output shaft cannot change instantecusly, and the Initial error 

is therefore equal to the magnitude of the step input. For the 
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acceleration interval, the initial conditions are therefore 

e(0) = 0 and e(0) = e0, and the equations of motion are 

e     =   -   -jJL.   t (4) 

At a time t^, the error is"reduced to half its original value, 

the torque is reversed by the action of the nonlinear anticipator, 

and the equations for the subsequent interval are 

• e zz -2j-  * -   2^^ 
(6) 

— (t?    -   t) (7) 

e SB 2»o    - S-Pf-^O    t    • 
1„ 3 

t" (8) 

= -^-<*2 -t>« (9) 

In Ecs. (7) and (9)v t5 is the time required for the error to 

become zero or the response time, riots illustrating those 

relations are given in Fig. 1(a). A family of curves for 

different values of eQ is given in Fig*. 1(c); similar curves, 

based on experimental data, are given by McDonald-1-0 and Hopkin^. 

Response Criteria 

The switching time, t,, can be found by substituting 

e - e /2 in £q. (5); the rbeult ia 

*1 = -u 90 (10) 
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The response tine, t2, ear: be found from £q«  (8) or, sore 

simply, by noting that 

t2      =     2    tl 

^ 

V2 

(11) 

(12) 

Zt oan be seen by inspection that the Integrated absolute 

error is 

*i ••*••. *t 
5/2 

"ff 
(13) 

The integrated squared error, somewhat more difficult to 

evaluate, turns out to be 

- - HH*1 '^ (14) 

All three measures of response are functions of J/fcB, as 

would be expected, and a povrer of e0 which is consistent with 

dimensional requirements*   -ith the torque-to-inertia ratio and 

initial error given in any ooneistent set of units, the response 

time and integrated absolute and squared error oan be computed 

directly from these equations* Kneeing the variation of these 

quantities with initial error, the values for any other initial 

error are readily determined* 
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To simplify future graphical work, ft has hean assumed 

that Tm = 1 and J = 1, with th« r*ault that & varies direotl; 

with t and e varies as t2/2» This assumption is equivalent to 

a change of variable which can be made definite if the need 

arises. 

•ilth the substitution of these numerical values, the 

error can be written 

• = •<>- 4- (i5) 

for   0 <,t < t^t and 

e     =   jL W) 

for t^<t K. t2« These equations are the basis of the phase- 

plane plots given in Fig. 2. It will be obaerved that all of 

the trajectories coincide approaching the origin; Sq. (1$) 

therefore gives the values of e and e at the time of torque 

reversal and divides the phase plane Into regions of positive 

and negative torque. Points above or to the right of this 

curve correspond to negative torque, and points Volo'J or to 

the left correspond to positive torque. Tho curve appears osly 

in the second and fourth quadrants, and is symmetrical about 

the origin. 

In general terns, the equation of the torque-reversal 

curve (in the fourth quadrant) is 

•8
2 = Jbu   «B C17) 

where "a'' denotes a switching point. Tho function of the 
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nonlinear anticipating network is to compare 52 with the proper 

multiple of e, thereby determining the position of the ay steal 

with respoot to the boundary, and supply a oignal to the relay 

" loh will result In the proper torque. The physical network 

can take a variety of forms8*10'11. 

II,  COULOMB FRICTION 

Previous studies have not considered the possible effocta 

of accidental Coulomb or vlaoous friction, although McDonald® 

suggests the deliberate use of Coulomb friction to assist in 

the decelerating process.  Vhlle it would be possible to study 

the behavior of the system with friction and the original 

switching procedure, it aeoma more fruitful to consider ohanges 

in the phase-plane boundary which will minimize the effect a of 

friction. As will be pointed out, a Blight change in the shape 

or location of the torque-reversal curve will preserve the 

desirable features of the original system with little sacrifice 

in performance. 

If motion of the output shaft is opposed by a woulomb 

friction torque If which la independent of velocity, the net 

accelerating torque la decreased but the doceloratlng torque      H 

Is increased. The motion la atill described by Sqo.  (2) and (>), 

except that TB must be re vlaced by (Tm - If) during the interval 

whon tho output shaft Is    ooelerating and by (Tra + If) during 

the Internal of dooeleratl \u To obtain the desired type of 

response, switching must be   delayed until the error is leaa 

than half its original volu , ao indicated by Kig. 1(b). 
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The error and error rcte will become sero simultaneously 

if the switching is oarried out in such a way that 

*i Of-**] - («• - HH1*!       (ie> 

jSquation (18) states that the velocity is continuous at t., and 

Sq.  (19) states that the total motion of the output shaft io eQ. 

To satisfy these conditions for all initial error magnitudes, 

it la n3ceseary to make the switching boundary 

9fl2      =       2      *• 1 Tf      eg (20) 

=       2 Jf- (1 • Tf/TB)    e. (21) 

in the fourth quadrant. Comparing this equation with the previous 

boundary, So*  (17), we observe that they are identical oxcept 

for the factor (1 + T*/Tm). This means that the square of the 

error rate must be compared with a larger multiple of the error; 

only a slight adjustment of thu nonlinear network is required. 

Phase-plane plots, showing the new location of tho torque- 

reversal ourve, are shown in Figs. 3(a) and 3(b) for Tf/Tm 

equal to 0*4 and 0.8* It will be seen that the switching ourve 

is closer to the vertical axis, reflecting the delay in switching, 

and that the maximum velocities are reduced, indicating an 

increase in response tlno. 
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The switcning time and response/may be calculated from 

Sqe. (18} and (19), giving 

1/2 
(22) 

(23) 

(24) 

where, for brevity, x s Tf/rm. These expressions reduce to the 

friction-free values when x = 0 and become infinite when x = 1, 

aa expected. ..'hen the friction torque is relatively small, 

x« 1, the response time is approximately 

3 

"    al^ a • -F> (25) 

Tor x ss o»29 the response time is increased about 2 per oent; 

for x = 0*8, the increase is 67 per cent. The some values may 

be obtained from plots of error uc a function of time, like 

thoae of Fig. 4. 

That a moderate amount of friction is not too serious 

may also be concluded from consideration of the integrated 

absolute and squared error, although these Integrals Increase 

wore rapidly with x than the response time does. Uome messy 

but straightforward integration and algebra establishes that 

the integrated absolute error is 

,'4 
"tf-fc 

Ai  sIMfc    eo 
3/2 

r i }#   I <* * -J-)       *26> 
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and the integrated squared error ia 

These equations also reduoe to the correct values for x = C, 
p -1/2 

beootae infinite for x = 1, end contain the factor (1 - x~) 

which appeared in the aquation for the response time. The two 

Sntegrals oaoh contain a second factor which causes them to 

inorease rapidly with x. Both integrals increase about 5 por cent 

for x = 0.2 and about 120 per cent when x = 0.8* 

Logarithmic plots of A-, and A?  as functions of x and e 

are given in Fig* 5; the curves are straight lines with slopes 

of 3/2 and 5/2, respectivelyt Curves showing the variation of 

t2» Aj, and A2 with x for a fixed e0 are givon in rig. 6. 

XII. VI5CGU3 FRICTION 

Zf motion of the output shaft is opposed by a viscous 

friction torque which is proportional to the velocity, new 

equations are needed to describe the variation of error with 

time and the ahepo of the torque-reversal curve must be changed 

for optimum performance. 

SuHa ifflfi&lgra 
Considering only viscous friction and inertia, the equation 

for the response of the system to a step Input is 

J e  + f e  := * Tm (28) 

where f is the friction coefficient and the sign of the torque 

will again depend on e and e. 
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The general solutions of this equation ore 

+    Kx  • 

fit    -   Kxt   e"1^    • K2 e     =      ± 

(59) 

(30) 

where   ^ =   1n t the maximum or limiting velocity; 

*£ «   £    T the time constant; 

end Kn end Ks depend on the initial conditions. 

For the seme initial conditions aa before, the error rate 

ar.d error during the accelerating interval are 

a      =    . ftU - •***) (3D 

e      •     eft    -fl,t    • Jit (1 - *"^) (32) 

Evidently the error rate increases exponentially toward the 

limiting value J\ t while tho error io reduced, alouly at 

first and finally at a constant rate. As in the provioue systems, 

it io proposed to reverse the torque at a time t* which is 

ohoeen in euoh a way that the error and error rat* become 

zero simultaneously at time t2« The complete response '.fill 

then be aa shown in Fig. 6A,  which may be compared with Figs. 

1(a)  and 1(b). 

At tinift %.    the error lias been reduced to 

e(t3)    =      ec    -  XI tx    + p/lX 

and the error rate ie 

(33) 

% 

e(t,)    =   -  oil (34) 
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wher* yo =     1   -   e"1^ , (35) 

and represents tne fraction of the limiting speed which is 

attained by the output shaft at the switching point. Equations 

(33), (34), and (35) provide the initial conditions for the 

decelerating interval between t-^ and t?* 

During the deceleration interval, the oeuatlona beoome 

e    =   Jit - 2Atx - fit 
• (|0+ l)A*Ca"(t mt^)/X     • e 

(37) 
o 

Imposing the conditions e(t2) = 0, e(t^) = 0, /e obtain 

after some algebraic manipulation two equations 

0   =   SI -   If+lhfl^2 -tl>/* (38) 

0   =   XL (t2 - tx)    - /L tx   •   e0 (39) 
• 

which are analogous to &?&• (18) and (19)* Except for the nature ' 

of the oouations, it would be possible to solve 2qs. (35), (38) ,f 

and (39) to determine /0 » t-, and t~ for any particular eQ. 

It is ouch more convenient, hov/evar, to consider that t1 is 

3iven» Using the value of p   computed from £q. (33), we find 

(tg - ti) from 

v;hich is derived from 3c., (38). Tho response time lo then 

t2  «  tx  •   (ta - tx)      (41) 
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and the initial error is 

e0 =  2 SI tx - A t2 (42) 

Oome typical response curves for & system of this type are 

given in Fig. 63 for X- 0 and 't= 1. .vhen 1  is made zero by 

eliminating the inertia, switching occurs at e m 0; with no 

inertia, the output shaft rotates only when torque is applied 

and comae to rest immediately when the torque ie removed* Tan 

swltohing point for X = 1 occurs at relatively small valuea 

of e, increasing to e$= 0*506 for large initial errors. 

Phase-plane plcts are given in Fig. 6C. 

The required torque-reversal curve in the pL -so -plane 

can he determined numerically, using £qs. (33) and (34) which 

give the coordinates of the switching point for a particular 

value of e • A more direct method is obtained by recognising 

that the switching boundary is also a particular trajectory 

of the system, passing through the origin. Noting that the 

torque in positive along this curve, we return to Ice*  (29) 

and (30), substitute the conditions e(0) = 0 and e(0) = 0, 

and obtain 

•B     =  Si U -•"**> (43) 

•«     =   At    - £lX (1 - e**t/lr)        (44) 

Eliminating t, we obtain 

= -Sir m j^i - -JL j   - te, •s   =   'Sir in   1 - -if-       - tes (45) 
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• aa the required relation between e0 and e0. The boundary for 

the fourth quadrant la obtained by substituting negative values 

of efi; the boundary in the second quadrant is obtained from 

symmetry considerations. 

Inasmuch as no analytic expression for the response time 

is avallsbifl; we will settle for a discussion of limiting oases 

and a graph obtained from numerical calculations. 

If the initial error is small, the maximum velocity 

attained will alec be small and the friction term will bo 

relatively Ineffective* The behavior of the system is then 

eeaentially that of the idealized system without friction. 

This expectation can be verified in two   /ayo. 

•/hen Qg/Qs   is small enough, wo can use the relation 

ln(l - x)    =   -jx   +   x£   •   *2 • ••• [ 

to reduce 3c. (45) to 

•s •M#*A^At>*#" ] -*•%   <*> 
*     X 2 

5X"   e« 
2 

(47) 

(48) 

This oquaticn is the same as So. (17) which doscribed the torque- 

reversal curve of the optimum system disouosod originally. 
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tfrien the initial error is aaall, the response time of 

the system ./ith visoouo friction is essentially the same as 

the response time of the system without friction.  »hen eQ is 

email, the maximum velooity attained is computed from 

f> *   -^- (49) 

Using JSc.  (40), we then have 

#-(t2 - H)ft *     1  (51) 

1 • tx/c 

*  i . ii + L^LI       (52) 

Expanding the exponential function in a series and taking 

only two terms, we get 

t        "     x    "* Ul 
or t»   &    2 t.    -   JUL (53) 2 1 t 

Substituting Eq. f53) into Sc. (42), we finally obtain 

or tj.   S^-4_   ,0 (55) 

which is identioal with 2q.  (10). Since the rosronse time is 

nearly   2 t.t it folio/s that 

t5   2     $a/-£—   o0 (56) * s  aft 
as before. 
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If the Initial error it large, it is oonvenient to write 

Sq. (42) in the form 

t0   =    J!a-   •    2 (t2 - tO (S7) 

einoe the limiting value of (t? - t^) can be found from Sq. (40) 

by taking O = 1. This substitution glvoe 

0«(t2 - t^/t a   
1 (58) 
2 

or (t2 - tx)       =   0.6931 <59) 

For large initial errors, the response time therefore approaches 

;* = it + to     =     -4?-     •    1.3861 (60) 

The relations are summarised in Pig. 6D which shows the 

response time as a function of initial error. A curve for the 

optimum system without friotion is given for comparison. As 

predioted, tho curve for X = 1 coincides rflth the ourve for 

the ideal system for initial errors less than about one-half 

and is a linear function of initial error when eQ is greater 

than t*o. A system with no inertia (X -  0) ia ou~erior to 

the ideal system for initial errors less than four. This 

result nay be expected from the foot that the inert loloss 

system roaches its maximum velocity l-modlately and wastes 

no time in aocoloration; for initial orroro creator than four, 

tho sroator maximum velocities which are possible in the idoal 

system result in a smaller rocronoe tine. 
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Curves of Integrated absolute and squared error as 

functions of the initial error,  plotted using logarithmic 

coordinates, are given in Flgt 6B. The dashed curves are 

for the optimum system without friotlon* For t -• 0, the 

curves are computed from the equations 

*j " *a " ~jf *° (61) 

*a = iir •»' t63) 

For t = 1, the curves were obtained by numerical integration 

from the computed response curves of 'Pig* 6B» 

The integrated absolute or squared error for the syotem 

with friction and inertia is always greater than the corres- 

ponding integral for either (1) a system with inertia and no 

friction (the optimum syotem originally considered) or (2) a 

system with friction and no inertia ( '? s 0). "or small 

initial errors, the curves for the syotem with X = 1 approach 

the ourvos for the original optimum system without friction; 

for large initial errors, the curves arc asymptotic to the 

curveo for *"£ = 0» as may be expected from the nature of the 

response. These limiting ourves ovldontly supply lower bounds 

for tho integrals and indicate the best possible performance 

to be expected from a given motor* Any method of control other 

than the optimum switching methods will result in poorer 

performance, shewn by an increase in the integrated absolute 

or squared error for any atop disturbance. 
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Although the special values Tm » J a f s 1 ware used 

to compute the response and phase-plane curves presented lu 

this section of tho report, the ourvos for If = 1 may be 

trostod as functions of dimensionless variables* To apply 

these results to other systems, it Is only necessary to 

consider that time has been measured relative to X   and 

error relative to AX. .Vith these eoale changes, the ourvos 

apply to any similar system* 

gflftkiafl gffldaofc aafl XXaawt rrtQUon 
If the proposed optimum cyst em is subjected to small 

coulomb OJC vlsoous friction torques, redesign of the nonlinear 

network will ro3ult in the desired typo of operation with a 

moderate sacrifice in performance, as has been indicated* No 

studies of the effects of combined coulomb and viscous 

friction have been made, but additional degradation of the 

response is to be expected* 

Sffeots of simultaneous coulomb and viscous friction 

can be minimised, however, by a suitable selection of the 

torcue-reveroal curve and the corresponding nonlinear notwork* 

As already noted , the toreue-reversal curve must be a 

trajectory of the system for the decoloration condition, 

passing through the origin* For thio case, the roruired 

curve can be computed by substituting 

= fL  (1 • X) (65) 

for A I in 3c* (45). 
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IV. SWITCHING 3RR0K3 

Hopkin11 describes two methods Tor converting the 

theoretical torque-reversal ourve Into a physical switching 

device. In one method the phase-plane plot ia reproduced on 

the face of a oathode-ray tube in which the horizontal and 

vertioal deflootiona of the beam depend dlreotly on the 

error and error rate. An opaque mask oovera the region on 

one aide cf the torque-reversal curve, and a photocell 

determines from tho location of tho spot whether positive 

or negative torque ia required. This scheme, which permits 

any required torque-reversal curve to be easily realized, 

ia bulky and complicated. 

Kore commonly10"12, awitching is carried out physically 

by comparison of two voltages, one proportional to tho error 

and tho other proportional to a nonlinear function of the 

error rate*. The nonlinear function is generated by biased- 

diode networks whose design ia based on Be. (17)* 

In previous Investigations this network has been made 

to produce a close approximation to the desired switching 

procedure, as determined by direct measurement and also by 

observation of the overall transient behavior of the system. 

No detailed study haa boon made of the required accuracy of 

this approximation. Since a rather poor approximation might 

I 

*The rovorse process, using a nonlinoar function of error 

anJ a voltaeo proportional to error rate, hc.3 also boon 

used . 
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give satisfactory results and bo much easier to realize, 

a study of the effects of improper ev; itching  *as made. 

For simplicity, friction torques are ignored ord 

switching is assume'    o be instantaneous* The systoa 

considered is the system proposed by McDonald and HopV;in, 

except that the torcue-reversal curve does not coincide 

with the correct curve given by 

. 2 
°s 

2J, 
J 's (17) 

aquation (17), which gives the torcue-reversal curve in the 

fourth quadrant of the phase plane, may be ./ritten 

J 
es =  - 2 T s 

m 
e 
8 

{66) 

to include both the second and fourth cuadrants* The torcue- 

reveroal curves   /hich have been studied are generalisations 

of Sq.  (6$) and are expressed as 
\ 

e s 
=     _      k e. 

8 

<X-  1 
(67) 

The coefficient "k" may be said to control the "location" 

of the torque-reversal curve, *Jhile the exponent V" governs 

the "shape" of the ourve. Tho correct values, glvon by Be.  (66)9 

are k = J/2Ta   and   <x s 2, For convenience, "location"  and 

"shape"  errors are considered separately. 



V. BOUNDARY LOCATION 

To examine the effects of varying k, it is assumed 

that oc = 2. The torque-reversal curve in the fourth quadrant 

is therefore 

eB  =  k  ea
2 (68) 

Letting Tm = J = 1, as before, the correct coefficient is 

k = 0.5- If the actual k is greater than the correct value, 

the torque-reversal curve moves closer to the horizontal 

axis of the phase plane and "early" switching results. 

Smaller values of k move the curve toward the vertical axis 

and cause "late" BWitching, with consequent ovorshoot or 

oscillation. 

The discussion of the switching process is simplified 

by use of a parameter r, defined by 

r  = J2L    , (69) 
eo 

where e^ is the error at the tlmo t, /hen the first switching 

takes place. The parameter r is a function of k but does not 

depond on e . Sarly switching corresponds to r > 0.5, while 

late switching means r < 0.5} the two cases require 

different treatment. 

In all cases, the error is given by 

e  =  e0  -  -£— (70) 

for  0 <. t < t^« For r ^ 0.5, the point in the phaso piano 
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then follows the torque-reversal curve; this behavior may 

be understood by reference to Fig. 7* 

The dashed curve In Fig. 7 io the torcus-revorsal curve 

for r = 0.7. In Fig. 7(a), the point has been allowed to 

travel past this curve to the curve for r = 0.6 before the 

torque is reversed. The point then moves on a trajectory 

v/hioh would result in an error ecual to 0.2 a  at the point 

of aero error rate* The torque is reversed again, ho.rovex . 

at a curve corresponding; to r = 0.8, and the output shaft 

is again aocelorated. The cycle of acceleration and decele- 

ration is repeated until the pcin4:- roaches the origin. 

In Fig. 7(b). sv/itching occurs on curves for which 

r = 0.66 and 0.74. The number of oscillations about the 

torque-reversal curve (r = 0.7) has increased ana the decrease 

in error between switching operations has been reduced* 

The switching procedure described is artificial and 

no attempt is made to interpret it physically; it 1B used 

to provide an easily defined limiting process which £ill 

explain system operation for ideal, instantaneous switching. 

In the limit, switching takes place at the curves r = 0.7 a e, 

with 6 approaching zero) the point thon makes a large number 

of small oscillations about the torcue-reversal carve* In 

effect, the point follows the toreuo-reversal curve, along 

which e and e are given by ir, (66). (woodless to say, this 

behavior is physically impossible and even a close approxi- 

mation would impose severe demands on the relay 0 
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For r < 0.5, the error la given by £q« (70) until the 

point reaches the torque-reversal curve. The trajectory then 

becomes 

•  s  *2 •  -5— (71) 

which applies until the next intersection with the torque- 

reversal ourve, at tims t,. Here e2 denotes the error at 

time t2 when the error rate is zero; the valuo of e2 *
fl 

•2  =   °o - 2 (1 * r) °o 

eQ (2r - 1) (72) 

At the noxt switching point, 

e3  =  r 9? (73) 

and it may be concluded that, in general, 

r   = Ji_ = .J!i_=-!5_*-2L_=    ..... (74) 
eo 82 °4 #6 

(2r - 1) =   «&••• = ^a^. • -26-. a JSa— =      (75) 
«o °2 *4 *6 

aquations (74) and (75) furnish the error at every switching 

point and every crossing of the horizontal axis. The trajectories 

Joining these points are all parts of a parabolic curve along 

which e varies as    e2/2. This curve can bo plotted once on a 

separate ah 001  r.t graph paper and traced to obtain the phase- 

plane plots. 

ttiase-plane plots for r = 0.2, 0.3, 0.4, 0.6, 0.7, and 

0,8 are given In Fig. 8; the plct, for r = 0.5 is found in 

Fig. 2. 

At 
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Curve a showing error an a function of tirae. based on the 

phase-plane plots, are given in Fig. 9 for a unit initial error 

and r = 0*7 and 0.3* As would be expooted from the phase-plans 

plots, tho error decreases slowly and monotonloally for r> C.5, 

resulting in an lnoreasod response time. For r < 0.5, the ?rror 

decreases to zero in a series of oscillations of diminishing 

period. 

The integrated absolute and squared error was determined 

numerically from curves similar to those of Fig. 9; the results 

are given in Fig. 10 as functions of k and r. The relation 

between k and r may be derived in the following way. At the 

first switching point, 

«! =  r eo =  k e^ (76} 

irom £c.s.  (68) and (69)* The error rate at this point is also 

given by 

e^2     =     2 (1 - r) e0 (77) 

from 2ci3.  (69) and (70). Eliminating e.,, we ootaln 

*   =    a li - >) <78) 

or r     =      —  (79) 
1    +    2 k 

A linear scale woe used for k, since it is likely to be the 

constant which is changed in adjusting the system. 
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Unlike the error intogrels, the response time ie easily 

computed and expressed, in closed fern;. From £q*  (5). the tiir* 

required to reach the first switching point is 

tl   =  ^ 2 Cl - r) eQ (80) 

For   r ^0.5, the time required to next reach zero error rate, 

which might be considered as the time for a half cycle of the 

oscillation, is 

t2   ft   2 tx   =     2J/2 •J (1 - r)    e0 (81) 

Py analogy, the time required for subsequent half cycles will 

be 

t4    .   t2    =     2^2    ^(1 - r)   |ej~ (82) 

t6    -   t4   =     25/<i   y(l-r)    e4 (83) 

•8    -   \   =     2 y<l-r)   |36l (84) 

and so forth* The absolute value marks are Introduced to avoid 

difficulty with signs, since e?, e,, e1Q.  •••    are negative. 

The response time is the sum of an infinite number of such 

Intervals, or 
(85) 

Response Time   B   25'2 n/ 1 - r j"¥o7   + Vl®? +V^"   WF3  * •••! 

However, from So.  (75),   'o have 

e2      =      (2r - 1)    e0 (86) 

e4      =     (2r - 1)    e2    =    (2r - I)2    eQ (87) 

e6      B      (2r - 1)    e4   =    (2r - 1)5    eG (88) 



and 30 forth. SxpreBBing 2q*  (85) entlroly in terns of o0> 

ond writing (1 - 2r) Instead of (2r - 1) in order to account 

for the absolute value marks, the response time is found to 

*• (89) 

Response Time   =   25-     "J (1 - r)    e0      1    •    z,   *•    z     •    s3 • ••• 

where z     =      (1 - ar)1/2 (90) 

This series is an infinite geometric progression, whose sum 

Responso Time     =     23'      —I—• r   u Y*o        *91* 

provided that    0 < r   £ 0.5* 

For   0.5 4r <1.0, a different approach in used, based 

on the relation 
0 

Response Tlrao     ac       t,      •    f (92) • * /., -? 
The error rate along the torque-reversal curve may, by means 

of Sq« (68), be expressed as 

•--fF k 

witn the result that 

(93) 

Response Time  =   t1 • 2 Jk o^^ (94) 

Equation (94) reduces, using BOB. (80), (78), and (69), to 

Response Time  = ll—  -Je^ (95) 
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Equations (91) and (95) give the response time for any 

value of r between zero and unity, 3q. (91) being used for 

oaaec of late switching and Kq* (95) for early switching* 

Values computed from these equations are given in Fig. 11 • 

Also shown in this figure axo other values of time at which 

the error is zero, taken from curves similar to those of 

Fig, 9. 

The response time is finite except for r = 0, which 

means a sustained oscillation, and r = 1, which corresponds 

to no reduction of initial error whatever. The response time 

increases rapidly as r is reduced below one-half, the correct 

value, and increases slowly with increasing r. On the basis 

of these observations, any error in the adjustment of the 

nonlinear lead network should be made in the direction of 

early switching} this conclusion would be strengthened by 

consideration of relay operating time, omitted in this 

study* 

Since the nature of the rosponse does not depend on the 

initial error, the ourves shown in Figs* 10 and 11 may be 

corrected by the use of See. (12), (13), and (14) for other 

values of J, TQ or e . The dependence of response time, 

Integrated absolute error, and Integrated squared error on 

J/Tm and e0 is not affected by errors in k* 



.**".• 

VI. BOUNDARY SHAPS 

Siven a biased-dio&o network which provides a voltage 

proportional to e2, it should be relatively eaay to adjust 

the constant of proportionality to obtain the correct torque- 

reversal curve and the desired switching behavior. The real 

difficulty is the design of a network to produce an accurate 

square-law relationship between input error rate and output 

voltage* 

In the following discussion, the torque-reversal curve 

is therefore taken as 

» 

in general, or 

efl   =   +   4- *s (97) 
2 

in the fourth quadrant. If OC is 1 or 3, the oases which are 

selected for study, the absolute value marks in fie.  (97) can 

be omitted and a minus sign substituted for the plus sign. The 

coefficient,  l/2» &*» been chosen to make the torque-reversal 

curve pass through the point (1/2, -1) as the correct curve 

does; tho curve does not coincide with the correct curve for 

other values of e and e. As before, the special case T    = J = 1 
* ID 

is considered. 

The analytical procedure adopted is essentially graphical; 

the torcue-reversal curve is plotted directly from Eq.   (97) and 

representative trajectorieo are traced, using curves plotted 

from Sqo.  (70) and (71)* oone typical phaac-plone plots are 

given in Figs. 12, 13, and 14. 
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System Scuatlona 

For  OC = l, the switching network is effectively * linoar 

lead network whoso properties have been studied^ »^. The point 

starts out along a trajectory given by ifiq. (70) and intersects 

the torque-reversal ourve (now a straight line) for the first 

time at values of e and e obtained by solving simultaneously 

•l     =       •„      -    _*i! <»> 

from £q. (70) and 

e,      = !L (99) 

from Eq. (97). The error at the first switching point is 

., =  -1 qEIS       (1oo) 
Several types of response may be distinguished, depending 

on the initial error: 

(a) If eQ< 3/8, the point follows the** torque-reversal 

ourve to the origin after its intersection with the 

curve at time t^. Since the error rate is directly 

proportional to the error along the torque-reversal 

curve, the error decreases exponentially with time. 

(b) If 3/8 < e0 < l, the point leaves the ourve along 

a trajectory which could be expressed by fiq. (71)» 

with e2 positive, intersecting the torque-reversal 

ourve again li the fourth quadrant; it then follows 

the torque-reversal ourve to the origin. 
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(o) If   e0 s 1, the point leaves tho torque-revoroal 

curve along the trajectory 

e      - (101) 

which la a particular caae of Eq. (71) and reaches 

the origin without further switching and In a finite 

time. 

(d) If e >1, the point leaves the torque-reversal 

curve along trajectories given by Sq. (71) and 

arrives at zero error rate with an error equal to 

e2 = - e0  1_ • If I *  foQ,  (102) 

This error may be taken as a new initial error and 

tests (a)-(d) again applied* 

With a linear lead network, therefore, large initial errors 

are reduced in an oscillatory fashion at first, followed by 

an exponential decrease to zero; small initial errors •'rill 

result In a monotonio response* 

For cc= 3, the torque-reversal curve is oloser to the 

horizontal axis than the correct curve for large errors* After 

the first intersection of the trajectory with the torque- 

reversal curve, two types of behavior may be noted: 

(a) For eQ > 10/27, the trajectories ooinolde with the 

torquo-roversal curve until the error is 4/27; *t 

this point a series of oscillations begins. 

(b) For oQ ^ 10/27, all trajectories reach the origin 

as the result of a scries of oscillations. 
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In this cose, largo Initial errors are reduced In a monotonie 

fashion at first, followed by an oscillatory door-ease to zero* 

The critical initial error, 10/27, is obtained in the 

following way. Consldor a point on the torcue-reversal curve; 

draw through this point a trajectory corresponding to a 

decelerating torque* If motion along this trajectory would 

cause the point to immediately enter the region of accelerating 

torque, the point will abandon this trajectory and follow the 

torquo-reversal curve• as discussed earlier (p. 2>). If motion 

along this trajectory causes the point to remain in a region 

of decelerating torque, the point will follow the trajectory 

until its next Intersection with the torque-reversal curve* 

A special situation Is evidently obtained if the trajectory 

coincides locally with the torque-reversal curve, that is, if 

the rate of change of e with e" along the trajectory is the 

same as the rate of change of e8 with eQ along the torque- 

reversal curve* Stated mathematically, this situation requires 

** I   --*•§- (103) de | 

de U      do s 

* l = 
tr

 w I   =   **• (104) 
**s 

s 

For «= 3, the torque-roversal curve is 

en  = - —L_  e_
3 ; (105) 

s       2     s 

a typical decelerating trajectory is 

0       =       °2     +   -£-      * (71) 
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Applying iSq.   (103)  and specifying that I in 3q.   (?1) be taken 

at a point on the torque-reversal curve, we obtain 

'    --j.    eQ
2      =      eg (106) 

or e s  -   £ (107) 
0 J 

At this point, the error is 

2 \3 
°s -+i-+y 

4 (100) 

From Eq. (70), the corresponding initial error is found from 

,   (109) *i -     2  \   3 / 

which gives 

e  =   yH    . (110) 
o     27 ; 

This analysis serves to determine exactly a critical initial 

error whose approximate magnitude is easily obtained by use 

of graphical methods. 

Response Criteria 

•'The phase-plane plots furnish a complete description of 

the system response and can be used to derive curves of error 

as a function of time to which the various response criteria 

can be applied. .Vhlle it would be possible to construct these 

curves entirely from the phaoo-plane plots, it is probably 

more satisfactory to obtain only certain crucial fact3 from 



- 34 - 

the phase-planet the error and error rate where trajectories 

arrive at, or depart from, the torque-reversal curve, and the 

error at points on the trajectories for which the error rate 

is zero. This data may be uss-i        connection with ec^iations 

for error as a function of time to obtain the desired curves* 

•<hen the trajectories do not coincide with the torc-ue- 

roverBal curve, the error can he calculated from Eq.  (3), using 

appropriate initial conditions. For 0C= 1, the time variation 

of the error is given by the differentia], equation 

-£- e      +      e     =0 (111) 

when the point describing the system is following the torque- 

reversal curve* This equation has the solution 

e  =  K e"2(t " tk) (112) 

where K is the error at time tk ./hen thla solution is first 

applicable; this solution applies from the time tk to infinity, 

when the error is zero* 

For 0C= 3, the time variation of the error along the 

torque-reversal curve can bo found from 

dt     =     -flf- (113) 
e 

and the equation, obtained from 2q«  (97), 

o     = 2j2e (114) 
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The resulting equation for error Is 

3 t    -   tx   = 
>V3 

e. 
2/3 

-    e 
2/3 

(115) 

where e1 is again the ervov at time t^ when the first suitohing 

occursj this equation applies until the error is reduced to 

4/27• It may he noted that tho error values to be substituted 

in this equation are less than e^. 

Typical curves of error as a function of time for a 

particular initial error are given in Fig. 15• For « = 1, there 

la one overshoot, followed by an exponential doorcase to zero; 

for oc = 3, tho error decreases to zero in a series of oscilla- 

tions of diminishing period* Kosponoe times estimated from a 

family of ci^ilar curves are given in Fig, 15A for both Of = 3 

and the ideal system (ot = ?.), 

A system with a linear load network { oc = 1) has the very 

lntoresting property that res response time is finite for a 

discrete set of initial errors (e0 =1, 3, 5, •••) and infinite, 

theoretically speaking, for all others* Practically, of course, 

the error is negligibly small in a reasonable time; the meaning 

of negligible" however, la a subjective matter and therefore a 

curve of response time as a function of initial error for this 

case is not very meaningful* For thi3 reason tho curve is not 

presented* 

No difficulty arises in the determination of the intograted 

absolute or squared error* Values of these integrals, obtained 

numerically from the response curves, are given in Fig* 16  as 

functions of OC with tho initial error as a parameter* Whilo 

OC = 2 is clearly tho optimum value, tho integrated errors arc 

relatively independent of oc  for i^all initial errors « 
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V2I. CONCLUSIONS 

Sffifitta 
Moderate deviations of the system parameters from their 

optimum values can be permitted without much sacrifice in 

the performance of the system, a»  measured by the reeiionse 

time, Integrated absolute error, or Integrated squared error 

for a step Input. 

motion 
A surprisingly large Coulomb friction torque, up to 

50 per cent; oan be tolerated if a simple adjustment is made 

in the switching device. Viscous friction Is not significant 

for- small errors, that is, errors which oan be reduced to 

zero without reaching the maximum available speed, if a 

similar adjustment is made* 

The torque-reversal curve should be designed to have an 

approximately "parabolic" shape and the correct location in 

the phase plane; imperfections in the switching devioe are 

less serious if they result in "early" switching. 

BMBfiMtt ScllacU 
The time required for the error to become zero after a 

step disturbance is a satisfactory measure of system quality, 

provided the time is finite. Zf tho time is not finite, the 

integrated absolute or squared error provides an objective 

criterion. Since the integrated absolute error is easier to 

calculate and is minimized by the oamo parameter values which 

minimize the integrated ccuarjd error, its use ie recommended1^ 
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LIST OF FIOURE3 

1. Error rate and error for a relay servomechaniom (a) without 
friction and (b) with Coulomb friction. 

1(c). Error as a function of time for a relay servcaechanism 
without friction. 

2. Error rate as a function of error for a relay servo- 
mechanism without friction (phase-plane plot). 

3. Phase-plane plots for a relay servaaechanism with Coulomb 
•Cy»4 ^4» 4 «%«* „ 

4. Error as a function of time for a relay servomechanism 
with Coulomb friction. 

5. Integrated absolute error (An) and squared error (AQ) as 
a function of initial error for Tf/Tm = 0, 0.2, 0.4 aud 0.8, 

6. Relative response time, integrated absolute error and 
integrated squared error as a function of Tf/T a# 

6A. Error rate and error for a relay servomechanism with 
viscous friction. 

6B. Error as a function of time for a relay servomechanlan 
with visoous friction. 
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6C. Phase-plane plot for a relay serveaechanion with vlscoue 
friction. 

6D. Response time as a function of initial error for relay 
servomeohaniams with viscous friction. 

6S. Integrated absolute arror (A-,) and squared en-or (Ap) as 
a function of initial error for relay servomechaniams with 
viscoup friction.  (Dashed curve la for a system v;ithout 
friotion.) 

7* Phase-plane plots to show effect of early torque reversal 
with a "parabolic"  switching curva* 

8. Phase-plane plots for a "parabolic" torque-reversal curve 
which causes switching at an error = r e  ; r = 0.2, 0.3, 
0.4, 0,5, 0.7,  and 0.8. ° 

9. 2rror as a function of time for sv/itching at r = 0.7 and 
0.3. 

10. Integrated absolute error (A.) and squared error (A2) for 
various values of r or the torque-reversal curve coefficient. 

11. Response time for various values cf r or the torque-reversal 
curva coefficient. 

12. Phase-plane plots for a linear (oc= 1) torque-reversal curve. 

13. Phase-plane plots for a 3/2-pover (<*= 1*3) tor :u©-ruvora*l 
curve. 

14. rhase-plane plots for a cubic  (c*= 3) tcrquo-reveroal curvo. 

15» iSrror as a function or ti~c for  °< = 1 and  <* = 3. 

15A. Response time as a function of initial error for a = 3 
and oc = 2  (optimum system)t 

16.  Integrated absolute error (A-,)  and squared error (A~)  as 
functions of   oc   for several*Sraluea of initial error. 
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